4.3 Article

Effects of pulse voltage on the droplet formation of alcohol and ethylene glycol in a piezoelectric inkjet printing process with bipolar pulse

期刊

MATERIALS TRANSACTIONS
卷 49, 期 2, 页码 331-338

出版社

JAPAN INST METALS & MATERIALS
DOI: 10.2320/matertrans.MRA2007217

关键词

inkjet printing; droplet formation; drop-on-demand; piezoeletric printhead

向作者/读者索取更多资源

The dynamics of droplet formation of liquid in a piezoelectric inkjet printing process with bipolar pulse and drop-on-demand (DOD) mode is investigated in this study. Two liquids with different viscosities and surface tension coefficients; alcohol and ethylene glycol, are studied. The effects of pulse voltage on the droplet formation are also examined. A piezoelectric actuated inkjet printhead with a nozzle orifice of 30 mu m in diameter is employed to conduct the investigations at room temperature (25 degrees C). The complex morphologies of the droplets during their formation, which include ejection and stretching of liquid, contraction of liquid column, pinch-off of liquid column from nozzle exit, breakup of liquid column into primary droplet and possible satellites, and combination of primary drop and satellites, are demonstrated. The droplet size is in the range of 23-37 mu m. The investigations also show a workable pulse voltage range; between 28 and 40 volts, exists for the droplets to be smoothly generated and ejected for alcohol where viscosity and surface tension coefficient are smaller. The range is between 30 and 50 volts for ethylene glycol. Within this workable voltage range, one single droplet for each pulse can be achieved with lower voltage. For the intermediate voltage, two droplets are generated initially and collide into one during the flying stage. For the higher voltage, multiple droplets are formed without recombination. It is also found that the velocities of the main droplet and satellite droplet in the different voltage ranges are responsible for whether the multiple initial droplets can be recombined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据