4.6 Article

CuInS2 nanoparticles: Microwave-assisted synthesis, characterization, and photovoltaic measurements

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2012.09.005

关键词

Semiconductor; Chalcogenide; Solar cell; Nanoparticle

资金

  1. council of University of Kashan [159271/31]
  2. Iran National Science Foundation
  3. IST, Jawaharlal Nehru Technological University Hyderabad
  4. TEM section, SAIF, NEHU, Shillong, Meghalaya, India

向作者/读者索取更多资源

For the first time, (1,8-diamino-3,6-dioxaoctan)copper(II) sulfate, [Cu(DADO)]SO4, and bis(propylenediamine)copper(II) sulfate, [Cu(pn)(2)]SO4, complexes as copper precursors have been used to prepare CuInS2 (CIS) nanoparticles in the presence of microwave irradiation. InCl3 anhydrous, thioacetamide (TAA), and propylene glycol were used as indium source, sulfur precursor, and solvent, respectively. Additionally, sodium dodecyl sulfate (SDS) was used as a capping agent. In this method, microwave irradiation created the activation energy for dissociating the precursors and led to the formation of CuInS2 nanoparticles. The effect of preparation parameters such as microwave power, irradiation time, and type of copper precursor on the particle size of the products was studied. To fabricate a solar cell, CdS film was directly deposited on top of the CIS film through the chemical bath deposition method. The as-deposited CdS/CuInS2 films were used for the photovoltaic measurements. According to I-V curves, it was found that the CIS nanoparticles synthesized by [Cu(DADO)]SO4 complex as precursor was better for solar cell applications. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据