4.5 Article

Vibration frequency of graphene based composites: A multiscale approach

出版社

ELSEVIER
DOI: 10.1016/j.mseb.2011.12.024

关键词

Graphene sheets; Composites; Atomistic model; Natural frequencies

资金

  1. Welsh Assembly Government through the ASTUTE
  2. Leverhulme Trust

向作者/读者索取更多资源

This paper presents a multiscale approach for vibration frequency analysis of graphene/polymer composites. The graphene is modelled at the atomistic scale, and the matrix deformation is analysed by the continuum finite element method. Inter-connectivity between graphene and polymer matrix are assumed to be bonded by van der Waals interactions at the interface. The impact of geometrical configuration (armchair and zigzag), boundary conditions and length on the overall stiffness of the graphene reinforced plastics (GRP) is studied. The natural frequency and vibrational mode shapes of GRP studied have displayed dependence on the length and also the boundary conditions. The exceptional vibrational behaviour and large stiffness displayed by GRP makes them a potential replacement for conventional composite fibres such as carbon and glass fibres. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据