4.5 Article

Titanium-based polymeric electrospun nanofiber mats as a novel organic semiconductor

出版社

ELSEVIER
DOI: 10.1016/j.mseb.2011.09.027

关键词

Organic semiconductors; Hybrid electrospun nanofibers; Electrospinning; IV study; Leakage current

资金

  1. chonbuk National University
  2. Deanship of Scientific Research at King Saud University [RGP - VPP - 089]

向作者/读者索取更多资源

Organic semiconductors have been extensively used in the electronic devices as activate components. However, most of the introduced organic materials are structurally complicated which leads to high commercial production cost. In this study, thin layer from titanium isopropoxide/poly(vinyl acetate) electrospun nanofibers is introduced as a new class of semiconducting materials. Electrospinning as a simple, effective, high yield and low cost process was used to prepare the introduced nanofiber films. The obtained results indicated that the titanium isopropoxide content has a distinct influence on the electrical conductivity as increasing the content shifts the conduction mechanism toward the semiconducting behavior. At 40 and 50 wt% titanium isopropoxide, the nanofiber mats behave as a semiconductor. Within the ohmic region in the IV chart, the saturation current and the corresponding applied voltage are directly proportional to the titanium isopropoxide content. Leakage current study indicated that Schottky emission is the dominant mechanism through both of the negative and positive bias regions. The introduced titanium isopropoxide/poly (vinyl acetate) nanofiber mats might open a new avenue to utilize the metal alkoxide/polymer nanofibers as novel and effective type of semiconducting materials. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据