4.5 Review

Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

出版社

ELSEVIER
DOI: 10.1016/j.mseb.2011.07.025

关键词

Composite materials; Dielectrics; Surface modification; Breakdown strength; Energy density; Covalent bonded interface

资金

  1. National Science Foundation
  2. Pennsylvania State University-Missouri SAMP
  3. T I/UCRC for Dielectric Studies [0628817, 2164-UM-NSF-0812]

向作者/读者索取更多资源

A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity similar to 6.3 and at a 30 mu m thickness achieved a calculated energy density of 4.6 J/cm(3). (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据