4.5 Article

Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mseb.2008.12.036

关键词

Photocatalytic degradation; TiO2; ZnO; Adsorption; Hollow sphere

资金

  1. Knowledge Innovation Program [cxcy2008008y]
  2. South Centural University for Nationalities [YZZ06019]
  3. National Natural Science Foundation of China [20807057]

向作者/读者索取更多资源

To study the relationship between the morphology and the photoreactivity of the catalyst, hollow spheres of two semiconductors of ZnO and TiO2 were synthesized by using sulfonated polystyrene (PS) as template. The catalyst samples were then characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), diffuse reflectance spectra (DRS), transmission electron microscopy (TEM) and N-2 sorption. Reactive brilliant red X3B, an anionic organic dye, was used in this study as a model chemical with the aim of organic pollutants control. The results show that, whatever the catalyst was, both the adsorptive ability and photoreactivity of the hollow spheres were much higher than that of nanoparticles. The adsorption and photoreactivity of ZnO hollow spheres increased by a factor of 7.36 and 4.66, respectively compared with ZnO nanoparticles, while 3.74 times increased in adsorption and 3.41 times increased in photoreactivity for TiO2 hollow spheres compared with TiO2 nanoparticles. Correlations between adsorption and photoreactivity reflected the importance of adsorption in the enhanced photoreactivity of ZnO and TiO2 hollow spheres. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据