4.7 Article

Strong resistance to hydrogen embrittlement of high-entropy alloy

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2018.08.101

关键词

High-entropy alloy; Hydrogen embrittlement; Cryogenic temperature; Ductility; Deformation microstructure

资金

  1. National Key Research and Development Program of China [2017YFB0702003]
  2. NSFC [11472287, 11790292, 11572324]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB22040302, XDB22040303]
  4. Key Research Program of Frontier Sciences [QYZDJSSW-JSC011]

向作者/读者索取更多资源

The resistance to hydrogen embrittlement (HE) of CrMnFeCoNi high-entropy alloy (HEA) at both room and cryogenic temperatures was examined through tensile experiments on specimens hydrogenated via cathodic electrochemical charging method. Two representative steels, i.e. 316L stainless steel (SS) and X80 pipeline steel (PS), were chosen for comparison due to their similar main constituent elements to CrMnFeCoNi HEA. Results show that the hydrogen pre-charged CrMnFeCoNi HEA has the smallest loss of ductility among the three materials at room temperature, while displays no reduction of elongation at 77 K, compared with the uncharged one. Fracture surfaces at both room and cryogenic temperatures of hydrogen pre-charged CrMnFeCoNi HEA are mainly composed of dimples, indicating ductile fractures, while brittle characteristics occur in pre-charged 316L SS and X80 PS. Typical deformation microstructure of the hydrogen pre-charged CrMnFeCoNi HEA at room temperature is tangled dislocations instead of highly dense dislocation walls (HDDWs) found in the pre-charged 316L SS. At 77 K, more deformation twins are formed in the both materials. Reasons for a higher resistance to HE of CrMnFeCoNi HEA at room temperature are attributed to the formation of less hydrogen trapping sites, thus a lower degree of hydrogen enrichment than 316L SS. While at 77 K, the atomic hydrogen is not able to promptly accumulate near these trapping sites due to its slow diffusion rate, which leads to strong HE resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据