4.7 Article

Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2013.05.053

关键词

Aluminum alloys; In-situ observation; Microstructure; Fatigue crack behavior

资金

  1. National Natural Science Foundation of China [51071177]
  2. Major State Basic Research Projections of China [2012CB619506]

向作者/读者索取更多资源

Microstructural aspects have fundamental influences on the fatigue crack characteristics of materials. In this paper, effects of inclusions, grain boundaries (GBs) and grain orientations on the fatigue crack initiation and propagation behavior in a 2524-T3 aluminum alloy have been investigated using in-situ scanning electron microscope (SEM) fatigue testing and electron back scattering diffraction (EBSD). The results show that, potential fatigue cracks tend to nucleate along coarse and closely spaced inclusion particles or high-angle GBs. Coarse inclusion particles drastically accelerate local crack growth rates. A model of series crack growing stages is given based on the observation of initiation and growth of cracks at the inclusion region. GBs serve to impede the crack tip from propagation and cause large angle crack deflections, which greatly affects local crack propagation behaviors. In addition, fatigue crack shows a strong tendency to propagate transgranularly grains with high Schmid factors (SFs) and avoid grains with low SFs. (C) 2013 Elsevier BM. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据