4.7 Article

Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2012.01.093

关键词

Super martensitic stainless steel; Microalloying; Nitrogen; Precipitate; Properties

资金

  1. CBMM, Brazil
  2. China Scholarship Council
  3. CBMM

向作者/读者索取更多资源

The morphological microstructure, the density and dispersion of high angle boundaries, morphology and micro chemical composition of precipitates and the volume fraction of retained austenite of a commercial super martensitic stainless steel (SMSS) normalized and tempered at various temperatures were characterized by optical microscope, scanning electron microscope (SEM), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) and X-ray diffraction (XRD) in the light of equilibrium phase diagram of the alloy calculated using Thermo-Calc software. The mechanical properties and pitting corrosion resistance were determined to correlate with microstructures. Two kinds of morphology of precipitate were observed in tempered commercial super martensitic stainless. Besides the globular Nb and V rich carbo-nitride precipitates, rod-like Cr rich nitrides were formed due to excess N content. While high density of high angle boundaries and precipitates contribute to strength properties, the dislocation softening of the matrix and retained austenite from tempering restore the ductility and impact toughness properties. The poor resistance to pitting corrosion is attributed to the occurrence of Cr rich precipitates. It is demonstrated that by lowering the nitrogen content and adding niobium, the Cr rich precipitates can be suppressed and the mechanical properties and resistance to pitting corrosion can be significantly improved. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据