4.7 Article

General relationship between strength and hardness

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2011.08.061

关键词

Crystalline materials; Bulk metallic glasses; Ceramics; Strength; Hardness; Yield criterion; Indentation

资金

  1. National Natural Science Foundation of China (NSFC) [50625103, 50890173, 50931005]
  2. National Basic Research Program of China [2010CB631006]

向作者/读者索取更多资源

Both hardness and strength are the important properties of materials, and they often obey the three times empirical relationship in work-hardened metals and some bulk metallic glasses (BMGs). But the relationships between strength and hardness are quite different for those coarse-grained (CG) and ultrafine-grained materials, brittle BMGs and ceramics. In the present work, some Cu alloys with different microstructures, Zr-, Co-based BMGs and Al2O3 were employed to analyze the general relationship between hardness and strength. Several different relationships could be gotten from the experimental results of different materials available, and three types of indentation morphologies were observed. Indentation with sink-in morphology always represents a state of material and one third of hardness is in the range from yield strength to ultimate tensile strength. The other two indentation morphologies induced the fully hardening of material, so hardness could represent the intrinsic mechanical property of materials. The ratios of hardness to strength are found to be affected by the piled-up behaviors and their ability of shear deformation. Combined effect of the two aspects makes hardness approximately be three times of strength in the work-hardened crystalline materials and the shearable BMGs, but higher than three times of strength in the brittle-, annealed BMGs and ceramics. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据