4.7 Article

Changes in the composition, structure and friction property of sputtered MoS2 films by LEO environment exposure

期刊

APPLIED SURFACE SCIENCE
卷 330, 期 -, 页码 30-38

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2014.12.175

关键词

LEO; Atomic oxygen; MoS2 films

资金

  1. China National Natural Science Foundation [51227804]

向作者/读者索取更多资源

Radio frequency-sputtered MoS2 films had been exposed for 43.5 h in real low earth orbit (LEO) space environment by a space environment exposure device (SEED) aboard China Shenzhou-7 manned spaceship. The composition, morphology, phase structure and friction property of the exposed films were investigated using X-ray photoelectron spectroscope (XPS), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray energy-dispersive spectroscopy (EDS) and ball-on-disk tribometer. XRD and EDS results revealed that the as-deposited MoS2 films were characterized by a MoSxOy phase structure, in which x and y values were determined to be similar to 0.65 and 1.24, respectively. XPS analysis revealed that due to space atomic oxygen attack, the film surface was oxidized to MoO3 and MoSxOy with higher O concentration, while the partial S was lost. However, the affected depth was restricted within the surface layer because of protective function of the oxidation layer. As a result, the friction coefficient only exhibited a slight increase at initial stage of sliding friction. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据