4.7 Article

Improving both strength and ductility of a Mg alloy through a large number of ECAP passes

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2009.01.040

关键词

Equal-channel angular pressing (ECAP); Magnesium alloys; Tensile behavior; Grain refinement; High-angle grain boundary (HAGBs)

资金

  1. Japan Society for the Promotion of Science (JSPS)

向作者/读者索取更多资源

Ultra-fine-grained (UFG) ZE41A aeronautic magnesium alloy was achieved through multi-pass equal-channel angular pressing (EACP) at 603 K and subsequently tested in tension from room temperature (RT) to 588 K. An extraordinary phenomenon was first observed, improving both ductility and strength of hcp-structured UFG Mg alloy after a large number of ECAP passes. The results demonstrate the pressed ZE41A alloy after 8 passes has higher tensile strength but relatively lower ductility than the unpressed sample from RT to, 423 K, whereas the tensile yield strength, ultimate strength, elongation to failure of UFG alloy after enough passes are all remarkably increased (about 120% higher in yield strength and 75% larger in elongation at RT after 32 passes). Multi-pass ECAP provides a simple and effective procedure for grain refinement of hcp-structured Mg alloy at elevated temperature undergoing dynamic recrystallization, while simultaneously improve its strength and ductility at service temperature owing to higher fraction of high-angle grain boundaries and lower intragranular dislocation density, making UFG Mg alloys more attractive in high strength structural applications. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据