4.7 Article

Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2009.02.033

关键词

Basalt fiber reinforced geopolymeric concrete (BFRGC); Impact characterization; Split Hopkinson pressure bar (SHPB); Strain rate effect; Strength grade

资金

  1. Doctorate Foundation of the Engineering College, Air Force Engineering University [13C07002]

向作者/读者索取更多资源

Industrial wastes, slag and fly ash, were used to produce geopolymeric concrete (GC), and which was reinforced with short basalt fiber. Impact mechanical properties of basalt fiber reinforced geopolymeric concrete (BFRGC) of three different matrix strengths were investigated using a 100-mm-diameter split Hopkinson pressure bar (SHPB), and strain rate effects on dynamic compressive strength, critical strain and specific energy absorption were studied. For the valid SHPB tests on BFRGC specimens, the improved pulse shaping techniques were proposed to obtain dynamic stress equilibrium and nearly constant strain rate loading over most of test durations. The results show that impact properties of BFRGC exhibit strong strain rate dependency, and increase approximately linearly with strain rate. The transition point from low strain rate sensitivity to high sensitivity decreases with the increase of matrix strength. The addition of basalt fiber can significantly improve deformation and energy absorption properties of GC, while there is no notable enhancement in dynamic compressive strength. Increase of matrix strength results in decrease of deformation capacity and increase of energy absorption capacity for BFRGC. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据