4.7 Article

Elastic properties of a material composed of alternating layers of negative and positive Poisson's ratio

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2008.11.002

关键词

Poisson's ratio; Indentation; Young's modulus; Strength

向作者/读者索取更多资源

The theory of elasticity predicts a variety of phenomena associated with solids that possess a negative Poisson's ratio. The fabrication of metamaterials with a 'designed' microstructure that exhibit a Poisson's ratio approaching the thermodynamic limits of 1/2 and -1 increases the likelihood of realising these phenomena for applications. In this work, we investigate the properties of a layered composite, with alternating layers of materials with negative and positive Poisson's ratio approaching the thermodynamic limits. Using the finite element method to simulate uniaxial loading and indentation of a free standing composite, we observed an increase in the resistance to mechanical deformation above the average value of the two materials. Even though the greatest increase in stiffness is gained as the thermodynamic limits are approached, a significant amount of added stiffness can be attained, provided that the Young's modulus of the negative Poisson's ratio material is not less than that of the positive Poisson's ratio material. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据