4.7 Article Proceedings Paper

Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2007.11.074

关键词

copper alloys; ductility; high-pressure torsion; severe plastic deformation; stacking fault energy

向作者/读者索取更多资源

Bulk ultrafine-grained (UFG) materials produced by severe plastic deformation (SPD) often have low ductility. A previous study demonstrated the possibility of lowering the stacking fault energy to simultaneously increase the strength and ductility. This paper demonstrates, there exists an optimal stacking fault energy for the best ductility in UFG Cu-Zn alloys processed by the same SPD processing. When the stacking fault energy is too low, the grain size lies below 15 run after SPD processing and the stacking faults are saturated so that it is difficult to accumulate dislocations and deformation twins during the subsequent tensile testing. These results provide significant guidance for the future design of UFG and nanocrystalline alloys for achieving high ductilities. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据