4.7 Article Proceedings Paper

Grain-size stabilization by impurities and effect on stress-coupled grain growth in nanocrystalline Al thin films

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2006.12.155

关键词

nanocrystalline materials; impurity drag; grain boundary migration; thin films; mechanical properties

向作者/读者索取更多资源

Room-temperature tensile experiments on sub-micrometer freestanding thin films deposited at varied base pressures reveal two distinct classes of mechanical response. Samples that contain sufficient impurity concentrations to stabilize the microstructure against an applied stress show strong but brittle response. However, films that were deposited at lower vacuum base pressures that still allow for thermally stable nanostructures show remarkably different deformation response; namely, moderate strength and over 15% plastic strain to failure. Post-mortem transmission electron microscopy of deformed samples with different levels of impurity pinning atmospheres reveals stress-driven discontinuous grain growth that facilitates a fundamental change in the deformation behavior of these thin films. The results indicate a critical impurity concentration to sufficiently pin or immobilize grain boundaries against the coupling of applied stresses. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据