4.8 Review

Fabrication and electrical properties of graphene nanoribbons

期刊

MATERIALS SCIENCE & ENGINEERING R-REPORTS
卷 70, 期 3-6, 页码 341-353

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.mser.2010.06.019

关键词

Graphene; Nanoribbons; Band gap; Fabrication; Electrical properties

向作者/读者索取更多资源

Graphene is a semimetal with a zero band gap, and therefore cannot be used for effective field-effect transistors (FETs) at room temperature. Theoretical study predicted an appreciable band gap opening with the formation of nanometer graphene nanoribbons (GNRs), providing opportunities for graphene based transistor application. In this paper, we review recent developments in fabrication and electrical property studies of GNRs. We first study the theoretic prediction of electrical structures in ideal graphene nanoribbons which is closely related to the edge configurations. Different experimental efforts to fabricate GNRs are introduced and the electrical transport behaviors of fabricated GNR device are described. We then investigate the effect of edge disorder and charge impurities on real device performance, in which Anderson localization and Coulomb blockade effect are discussed to explain the observed transport behaviors. Other approaches such as symmetry broken to induce band gap on bulk graphene are also described. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据