4.3 Article

A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2013.12.007

关键词

Magnesium phosphate; Room temperature fabrication; Paste extruding deposition; Bone scaffold; Direct drug loading

资金

  1. Mid-career Researcher Program through an NRF
  2. Korean Ministry of Education, Science, and Technology (MEST) [2013-035273]

向作者/读者索取更多资源

A novel room temperature process was developed to produce a 3D porous magnesium phosphate (MgP) scaffold with high drug load/release efficiency for use in hard tissue regeneration through a combination of a paste extruding deposition (PED) system and cement chemistry. MgP scaffolds were prepared using a two-step process. The first step was fabrication of the 3D porous scaffold green body to control both the morphology and pore structure using a PED system without hardening. The second step was cementation, which was carried out by immersing the scaffold green body in the binder solution for hardening instead of the typical sintering process in ceramic scaffold fabrication. Separation of the manufacturing process and cement reaction was important to secure enough time to fabricate a 3D scaffold with various sizes and architectures under homogeneous extruding conditions. Because the whole process is carried out at room temperature, the bioactive molecules, which are easily denatured by heat, may apply to scaffolds during the process. Lysozyme was selected as a model bioactive substance to demonstrate the efficiency of this process; this was directly mixed into MgP powder to introduce homogeneous distribution in the scaffold. The extruding paste for the PED system was prepared using the MgP-lysozyme blended powder as starting materials. That is, both 3D scaffold fabrication and functionalization of the scaffold with bioactive substances could be carried out simultaneously. This process significantly enhanced both drug loading efficiency and release performance compared to the typical sintering process, where the drug is generally loaded by adsorption after heat treatment. The MgP scaffold developed in this study satisfied the required conditions for scaffolding in hard tissue regeneration in an ideal manner, including 3 dimensionally well-interconnected pore structures, favorable mechanical properties, biodegradability, good cell affinity and in vitro biocompatibility; thus, it has excellent potential for application in the field of biomaterials. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据