4.3 Article

Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: A comparative study

出版社

ELSEVIER
DOI: 10.1016/j.msec.2013.03.020

关键词

Hardystonite; Hydroxyapatite; Cell proliferation; Cellular infiltration; Electrospinning; Mineralization

资金

  1. DST
  2. CSIR

向作者/读者索取更多资源

The aim of this study was to compare physico-chemical and biological properties of hydroxyapatite (HA) and hardystonite (HS) based composite scaffolds. Hardystonite (Ca2ZnSi2O7) powders were synthesized by a sol-gel method while polycaprolactone-hardystonite (PCL-HS) and polycaprolactone-hydroxyapatite (PCL-HA) were fabricated in nanofibrous form by electrospinning. The physico-chemical and biological properties such as tensile strength, cell proliferation, cell infiltration and alkaline phosphatase activity were determined on both kinds of scaffolds. We found that PCL-HS scaffolds had better mechanical strength compared to PCL-HA scaffolds. Addition of HA and HS particles to PCL did not show any inhibitory effect on blood biocompatibility of scaffolds when assessed by hemolysis assay. The in vitro cellular behavior was evaluated by growing murine adipose-tissue-derived stem cells (mE-ASCs) over the scaffolds. Enhanced cell proliferation and improved cellular infiltrations on PCL-HS scaffolds were observed when compared to HA containing scaffolds. PCL-HS scaffolds exhibited a significant increase in alkaline phosphatase (ALP) activity and better mineralization of the matrix in comparison to PCL-HA scaffolds. These results clearly demonstrate the stimulatory role of Zn and Si present in HS based composite scaffolds, suggesting their potential application for bone tissue engineering. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据