4.3 Article

Structural and microstructural characterizations of nanocrystalline hydroxyapatite synthesized by mechanical alloying

出版社

ELSEVIER
DOI: 10.1016/j.msec.2013.03.015

关键词

Hydroxyapatite; Nanocrystalline; Microstructure; XRD; TEM; Mechanical properties

资金

  1. University Grants Commission (UGC), India
  2. Dept. of Physics, The University of Burdwan

向作者/读者索取更多资源

Single phase nanocrystalline hydroxyapatite (HAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4 powders in open air at room temperature, for the first time, within 2 h of milling. Nanocrystalline hexagonal single crystals are obtained by sintering of 2 h milled sample at 500 degrees C. Structural and microstructural properties of as-milled and sintered powders are revealed from both the X-ray line profile analysis and transmission electron microscopy. Shape and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Particle size of HAp powder remains almost invariant up to 10 h of milling and there is no significant growth of nanocrystalline HAp particles after sintering at 500 degrees C for 3 h. Changes in lattice volume and some primary bond lengths of as-milled and sintered are critically measured, which indicate that lattice imperfections introduced into the HAp lattice during ball milling have been reduced partially after sintering the powder at elevated temperatures. We could achieve similar to 96.7% of theoretical density of HAp within 3 h by sintering the pellet of nanocrystalline powder at a lower temperature of 1000 degrees C. Vickers microhardness (VHN) of the uni-axially pressed (6.86 MPa) pellet of nanocrystalline HAp is 4.5 GPa at 100 gm load which is close to the VHN of bulk HAp sintered at higher temperature. The strain-hardening index (n) of the sintered pellet is found to be >2, indicating a further increase in microhardness value at higher load. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据