4.3 Article

A study of the dynamic compressive behavior of Elk antler

出版社

ELSEVIER
DOI: 10.1016/j.msec.2011.03.002

关键词

Antler; Bone; Compressive strength; Hopkinson bar; Strain rate

向作者/读者索取更多资源

Large mammalian antler is extremely tough and fracture resistant compared to other more brittle forms of skeletal bone. The ability of antler to resist fracture is associated with a decrease in material stiffness and yield strength and increased non-linear response, due in part to antler being fast growing, since they are typically shed and regrown annually. Since male Elk commonly engage in antler sparring as a means of making dominance displays, the ability to withstand large impacts suggest that antler may exhibit strain-rate dependent behavior even greater than skeletal bone. To evaluate this hypothesis, specimens of antler were tested in compression over a range of strain rates. Specimens were loaded either along or transversely to the osteonal growth direction, in wet and dry conditions. Results showed that antler exhibits higher compressive strengths at increased strain rates, and that strain rate and hydration are greater determinants of compressive strength than osteonal orientation. In addition, antler can sustain compressive strains a full order-of-magnitude greater than in mammalian long bone. Failed specimens showed that a hierarchical chain of deformation mechanisms sustains the large bulk strains supported by antler. These mechanisms appear to be less brittle and more fibrous than those seen previously in skeletal bone. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据