4.3 Article

Trabecular scaffolds created using micro CT guided fused deposition modeling

出版社

ELSEVIER
DOI: 10.1016/j.msec.2006.11.010

关键词

scaffolds; rapid prototyping; fused deposition modeling; micro CT; bone

资金

  1. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R01EB000660] Funding Source: NIH RePORTER
  2. NIBIB NIH HHS [R01 EB000660-02, R01 EB000660-03, R01 EB000660-02S1, R01 EB000660, R01 EB000660-04] Funding Source: Medline

向作者/读者索取更多资源

Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups (n=6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 degrees C saline solution for 7 days before compression testing. Micro CT was used. to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94 +/- 1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff (p < 0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing. (C) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据