4.6 Article

Riley oxidation: A forgotten name reaction for synthesis of selenium nanoparticles

期刊

MATERIALS RESEARCH BULLETIN
卷 45, 期 9, 页码 1213-1217

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.materresbull.2010.05.013

关键词

Nanostructure; Semiconductor; Chemical synthesis; Differential scanning calorimetry (DSC); Electron microscopy

资金

  1. Department of Atomic Energy

向作者/读者索取更多资源

A simple wet chemical method, involving reaction of acetone with selenium dioxide, has been developed, to synthesize polyvinyl alcohol-stabilized selenium nanoparticles. The method is capable of producing nanoparticles in the size range of about 100-300 nm, under ambient conditions. The synthesized nanoparticles can be separated easily from the aqueous sols by a high-speed centrifuge, and can be re-dispersed in aqueous medium by a sonicator. The effect of concentrations of selenium dioxide, acetone and PVA on the size of the selenium nanoparticles has been studied. The size of the selenium nanoparticles has been found to increase with increase in the reaction time as well as the concentration of selenium dioxide, while it decreases with increase in the concentration of the stabilizer, PVA. The synthesized selenium nanoparticles have been characterized by UV-visible optical absorption spectroscopy, X-ray diffraction, energy dispersive X-ray analysis, differential scanning calorimetry, atomic force microscopy, scanning electron microscopy and transmission electron microscopy techniques. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据