4.6 Article

Multifunctional Fe3O4/graphene oxide nanocomposites for magnetic resonance imaging and drug delivery

期刊

MATERIALS CHEMISTRY AND PHYSICS
卷 141, 期 2-3, 页码 997-1004

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2013.06.054

关键词

Magnetic materials; Biomaterials; Nanostructures; Magnetic properties

资金

  1. National Natural Science Foundation of China [31000427, 81271719, 81271720]
  2. Fundamental Research Funds for the Central Universities [DUT12JB09]

向作者/读者索取更多资源

It is significant interest in developing novel multifunctional nanocarrier with complementary roles in recent years. Magnetic Fe3O4/graphene oxide (GO) nanocomposites with integrated characteristics of magnetic resonance imaging (MRI) and controlled drug delivery were prepared by an inverse co-precipitation method. The microstructure and physical properties of Fe3O4/GO nanocomposites were investigated by transmission electron microscope, wide-angle X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analyzer and superconducting quantum interference device magnetometer. The obtained nanocomposites exhibited superparamagnetic property with the saturation magnetization of 63.3 Am-2 kg(-1) at room temperature. In vitro MRI experiments revealed that Fe3O4/GO nanocomposites possessed an excellent MRI enhancement effect. 5-Fluorouracil (5-FU) as an anti-tumor model drug was loaded onto the surface of Fe3O4/GO nanocomposites. The drug loading capacity of this nanocarrier was as high as 0.37 mg mg(-1) and the drug release behavior showed pH-dependence. The results suggested that the as-prepared Fe3O4/GO nanocomposites showed great potential as an effective multifunctional nanoplatform for MRI and controlled drug delivery. Crown Copyright (c) 2013 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据