4.7 Article

Microstructure and creep characteristics of dissimilar T91/TP316H martensitic/austenitic welded joint with Ni-based weld metal

期刊

MATERIALS CHARACTERIZATION
卷 72, 期 -, 页码 15-23

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.matchar.2012.06.014

关键词

Martensitic/austenitic weldment: T91/TP316H; Ni-based weld metal; Microstructure; Creep behavior; Failure mode

资金

  1. Slovak Scientific Grant Agency (VEGA) [2/0128/10]

向作者/读者索取更多资源

This paper deals with characterization of microstructure and creep behavior of dissimilar weldment between the tempered martensitic steel T91 and the non-stabilized austenitic steel TP316H with Ni-based weld metal (Ni WM). Microstructure analyses were performed using light microscopy, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. The martensitic part of the welded joint exhibited a wide heat-affected zone (HAZ) with typical microstructural gradient from its coarse-grained to the fine-grained/intercritical region. In contrast, the HAZ of austenitic steel was limited to only a narrow region with coarsened polygonal grains. The microstructure of Ni WM was found to be very heterogeneous with respect to the size, morphology and distribution of grain boundaries and MC-type precipitates as a result of strong weld metal dilution effects and fast non-equilibrium solidification. Cross-weld creep tests were carried out in a temperature range from 600 to 650 degrees C at applied stresses from 60 to 140 MPa. The obtained values of apparent stress exponents and creep activation energies indicate thermally activated dislocation glide to be the governing creep deformation mechanism within the range of used testing conditions. The creep samples ruptured in the T91 intercritical HAZ region by the type IV cracking failure mode and the creep fracture mechanism was identified to be the intergranular dimple tearing by microvoid coalescence at grain boundaries. The TEM observations revealed pronounced microstructural differences between the critical HAZ region and the T91 base material before as well as after the creep exposure. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据