4.2 Article

Development of EPRI P87 solid wire

期刊

MATERIALS AT HIGH TEMPERATURES
卷 27, 期 3, 页码 243-252

出版社

SCIENCE REVIEWS 2000 LTD
DOI: 10.3184/096034010X12820642590729

关键词

creep strength enhanced ferritic steel; dissimilar metal welds; EPRI P87; ERNiCr-3; gas-tungsten arc welding; gas-metal arc welding; heat-affected zone; Larson-Miller parameter; procedure qualification record; shielded-metal arc welding; stress-rupture; ultimate tensile strength; weldability; yield strength

向作者/读者索取更多资源

Dissimilar metal welds (DMW's) between ferritic and austenitic materials at elevated temperatures have concerned boiler manufacturers and operators for decades because of the proven potential for premature failure. The industry has desired an improved filler metal that would minimize or eliminate DMW failures and, with the current trend toward higher boiler steam pressures and temperatures, have suitable creep strength for joining higher strength materials such as Grade 91 steels After years of research, the Electric Power Research Institute (EPRI) concluded the development and commercialization of a nickel-based filler metal, EPRI P87, for application in shielded metal arc welding (SMAW). This work describes the subsequent development of an EPRI P87 solid wire welding product for application in gas tungsten arc and gas metal arc welding (GTAW and GMAW) processes, and the initial research into the performance of DMWs produced with the new solid wire P87 product. A 135 kg heat of solid wire was produced and tested using various welding processes and evaluation methods to ensure that the material would meet required weldability and design specifications. Welding methods included GMAW-P, GTAW and hot-wire GTAW in welds up to 50 mm in thickness. The weld joint tested was a dissimilar metal weld of grade 91 to 347H, which was assessed using microstructure evaluation, creep testing, hot tensile testing, circular patch, and edge build-up investigations to examine hot-cracking susceptibility. This paper summarizes the research completed to date on the EPRI 87 filler wire which supports the acceptability of this material for its intended use in high-temperature power generation applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据