4.6 Article

New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming

期刊

MATERIALS AND STRUCTURES
卷 43, 期 7, 页码 963-983

出版社

SPRINGER
DOI: 10.1617/s11527-009-9559-y

关键词

CFRP confinement; Linear genetic programming; Formulation; Concrete compressive strength

向作者/读者索取更多资源

This paper proposes a new approach for the formulation of compressive strength of carbon fiber reinforced plastic (CFRP) confined concrete cylinders using a promising variant of genetic programming (GP) namely, linear genetic programming (LGP). The LGP-based models are constructed using two different sets of input data. The first set of inputs comprises diameter of concrete cylinder, unconfined concrete strength, tensile strength of CFRP laminate and total thickness of utilized CFRP layers. The second set includes unconfined concrete strength and ultimate confinement pressure which are the most widely used parameters in the CFRP confinement existing models. The models are developed based on experimental results collected from the available literature. The results demonstrate that the LGP-based formulas are able to predict the ultimate compressive strength of concrete cylinders with an acceptable level of accuracy. The LGP results are also compared with several CFRP confinement models presented in the literature and found to be more accurate in nearly all of the cases. Moreover, the formulas evolved by LGP are quite short and simple and seem to be practical for use. A subsequent parametric study is also carried out and the trends of the results have been confirmed via some previous laboratory studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据