4.5 Article

Multiobjective Optimization of Experimental and Simulated Residual Stresses in Turning of Nickel-Alloy IN100

期刊

MATERIALS AND MANUFACTURING PROCESSES
卷 28, 期 7, 页码 835-841

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10426914.2012.718474

关键词

Machining; Nickel-based alloy; Particle swarm optimization; Residual stress

资金

  1. National Science Foundation [NSF-CMMI-1130780]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [1130780] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this study, physics-based simulations are utilized to predict the forces and residual stresses induced during machining, and the results were validated using the experimental measurements. Physics-based simulations also involve uncertainty in the predicted values that can be represented as expected value and variance of the predictions. These predictions are inputted to a multiobjective optimization methodology to select the optimal machining parameters where competing or conflicting objectives constitute hurdles in the decision-making of the manufacturing plans. The objectives are chosen as related to residual stress measurements and predictions. Multiobjective particle swarm optimization (PSO) procedure is employed in optimizing process parameters. Objectives are solved for minimizing tensile residual stresses on the surface, maximizing peak compressive residual stresses, and minimizing the variance of these variables in order to increase certainty in the predictions. The optimum machining parameters corresponding to this multiobjective optimization are represented in both objective function and decision variable spaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据