4.7 Article

Effect of the friction riveting process parameters on the joint formation and performance of Ti alloy/short-fibre reinforced polyether ether ketone joints

期刊

MATERIALS & DESIGN
卷 60, 期 -, 页码 164-176

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2014.03.042

关键词

Friction riveting; Titanium; Composite; Multi-material joints; Design of experiments

资金

  1. Helmholtz Association (Young Investigator Group Advanced Polymer-Metal Hybrid Structures), Germany

向作者/读者索取更多资源

The feasibility of friction riveting on short carbon fibre-reinforced thermoplastic polymers was investigated in this work. A design of experiments (DoE) was used to investigate the impact of rotational speed, friction time, friction pressure and forging pressure on joint formation and performance. The joint formation was studied using the mushrooming efficiency, the rivet penetration depth and the mechanical energy input. The tensile pull-out force was used to describe the mechanical performance of the investigated metallic-insert joints made of grade 3 titanium and short carbon fibre-reinforced polyether ether ketone (PEEK). All samples were scanned with X-rays before any mechanical testing to acquire the dimensions of the anchored rivet inside the reinforced polymer, elucidating their correlations with the mechanical performance. The DoE model can be used to tailor joint formation and performance. A parameter-set that improves the pull-out performance was determined using an analysis of variance. The analysis revealed that high rotational speed, friction time and forging pressure caused high pull-out forces. The metallic-insert joints reached high pull-out tensile strength between 6.3 kN and 10.7 kN. The dimensions of the deformed metallic rivet were correlated with the mechanical performance of the joint: the larger the widening of the rivet tip, the higher the pull out force was. Furthermore, widening of the rivet tip by 70% led to the maximal tensile pull-out force (10.7 kN), corresponding to the base material strength of the titanium rivet (10.7 kN). At this threshold value (70%), the failure mode also changed from failure mode III (pull-out of rivet) to failure mode I (rivet failure). (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据