4.7 Article

Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: Influence of particle size and loading

期刊

MATERIALS & DESIGN
卷 63, 期 -, 页码 565-574

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2014.06.032

关键词

Nitrile rubber; Rice bran carbon; Mechanical properties; Composites

向作者/读者索取更多资源

Four types of rice bran carbon (RBC) with different particle sizes were compounded with nitrile rubber (NBR) in a laboratory size two-roll miller. The obtained RBC/NBR composites were characterized using Field Emission Scanning Electron Microscopy (FE-SEM) and tensile tests. Experimental results showed the RBC with lowest particle size exhibited best dispersion state and superior reinforcement ability. Then, we investigated the influence of RBC loading on the morphology, vulcanization characteristics, mechanical, thermal and friction properties of NBR composites. Experimental results indicated that the incorporation of RBC resulted in higher torque values, longer curing time, but shorter scorch time. The addition of RBC remarkably improved the mechanical properties of NBR composites. However, when the RBC loading exceeded 60 phr, the improvement in the tensile strength was not significant due to the poor dispersion state and weak interfacial bonding between RBC and NBR matrix, which were confirmed by Mooney-Rivlin stress-strain curves and FE-SEM observations. The thermal stabilities of RBC/NBR composites were largely improved as the loading of RBC increased. Friction tests revealed that under a certain concentration, the presence of RBC increased the static friction coefficient of NBR composites, suggesting the anti-skid role of RBC in the NBR composites. The overall results demonstrated that RBC could act as ideal filler for NBR composites providing both economic and environmental advantages. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据