4.7 Article

An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying

期刊

MATERIALS & DESIGN
卷 57, 期 -, 页码 394-404

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2013.12.067

关键词

Mechanical alloying; Nanocomposites; Compressibility: sinterability

向作者/读者索取更多资源

Nanostructured Al 6061-x wt.% TiC (x = 0.5, 1.0, 1.5 and 2.0 wt.%) composites were synthesised by mechanical alloying with a milling time of 30 h. The milled powders were consolidated by cold uniaxial compaction followed by sintering at various temperatures (723, 798 and 873 K). The uniform distribution and dispersion of TiC particles in the Al 6061 matrix was confirmed by characterising these nanocomposite powders by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The mechanical properties, specifically the green compressive strength and hardness, were tested. A maximum hardness of 1180 MPa was obtained for the Al 6061-2 wt.% TiC nanocomposite sintered at 873 K, which was approximately four times higher than that of the Al 6061 microcrystalline material. A maximum green compressive strength of 233 MPa was obtained when 2 wt.% TiC was added. The effect of reinforcement on the densification was studied and reported in terms of the relative density, sinter-ability, green compressive strength, compressibility and Vickers hardness of the nanocomposites. The compressibility curves of the developed nanocomposite powders were also plotted and investigated using the Heckel, Panelli and Ambrosio Filho and Ge equations. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据