4.7 Article

A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique

期刊

MATERIALS & DESIGN
卷 53, 期 -, 页码 217-225

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2013.07.006

关键词

Friction stir welding; Aluminum alloy; SiC; Aluminum matrix nano-composite; Mechanical properties

资金

  1. Iranian Nanotechnology Initiative

向作者/读者索取更多资源

The main object of the present study is to investigate the effect of nano-sized SiC particle on the mechanical properties of the friction stir welding (FSW) joints. Prior to FSW, nano-sized SiC particles were incorporated into the joint line. A combination of three rotational speeds and three traveling speeds were applied. Microstructural evaluation using optical microscopy (OM) and scanning electron microscopy (SEM) revealed a banded structure consisting of particle-rich and particle-free regions in stir zone (SZ). The joints fabricated with rotational speed of 1250 rpm and traveling speeds of 40 and 50 mm/min, exhibited the highest mechanical properties. Owing to the presence of SiC nano-particles, at 1250 rpm and 40 mm/min, ultimate tensile strength (UTS) and percentage of elongation were improved by 31% and 76.1%, respectively. Significant increase in UTS and percentage of elongation were attributed to the pinning effect and increased nucleation sites associated with SiC nano-particles. Moreover, reinforcement particles resulted in breaking of primary grains. On the other hand, at 1250 rpm and 40 mm/min, SiC-included specimen showed superior ductility to SiC-free specimen. The fracture morphologies were in good agreement with corresponding ductility results. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据