4.7 Article

Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming

期刊

MATERIALS & DESIGN
卷 45, 期 -, 页码 605-615

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2012.09.032

关键词

Ductile damage; Identification; Artificial Neural Networks; Metal forming; Experimental mechanics; Numerical Simulation

向作者/读者索取更多资源

In this paper, we report on the developed and used of finite element methods, have been developed and used for sheet forming simulations since the 1970s, and have immensely contributed to ensure the success of concurrent design in the manufacturing process of sheets metal. During the forming operation, the Gurson-Tvergaard-Needleman (GTN) model was often employed to evaluate the ductile damage and fracture phenomena. GTN represents one of the most widely used ductile damage model. In this investigation, many experimental tests and finite element model computation are performed to predict the damage evolution in notched tensile specimen of sheet metal using the GTN model. The parameters in the GTN model are calibrated using an Artificial Neural Networks system and the results of the tensile test. In the experimental part, we used an optical measurement instruments in two phases: firstly during the tensile test, a digital image correlation method is applied to determinate the full-field displacements in the specimen surface. Secondly a profile projector is employed to evaluate the localization of deformation (formation of shear band) just before the specimen's fracture. In the validation parts of this investigation, the experimental results of hydroforming part and Erichsen test are compared with their numerical finite element model taking into account the GTN model. A good correlation was observed between the two approaches. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据