4.7 Article

Synthesis and characterization of titanium-45S5 Bioglass nanocomposites

期刊

MATERIALS & DESIGN
卷 32, 期 5, 页码 2554-2560

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2011.01.047

关键词

Nano-materials; Mechanical alloying; Corrosion

资金

  1. Polish Ministry of Education and Science [NoN507 295039]

向作者/读者索取更多资源

Titanium-45S5 Bioglass nanocomposites were synthesized by the combination of mechanical alloying and powder metallurgy process. The structure, mechanical and corrosion properties of these materials were investigated. Microhardness test showed that the obtained material exhibits Vicker's microhardness as high as 770 HV0.2 for Ti-20 wt.% 45S5 Bioglass, which is more than three times higher than that of a conventional microcrystalline titanium (225 HV0.2). Additionally, titanium-10 wt.% of 45S5 Bioglass nanocomposites (i(c) = 1.20 x 10(-7) A/cm(2), E-c = 0.42 V vs. SCE) were more corrosion resistant than microcrystalline titanium (i(c) = 2.27 x 10(-6) A/cm(2), E-c = -0.36 V vs. SCE). In vitro biocompatibility of these materials was evaluated and compared with a conventional microcrystalline titanium, where normal human osteoblast (NHOst) cells from Cambrex (CC-2538) were cultured on the disks of the materials and cell growth was examined. The morphology of the cell cultures obtained on Ti-10 wt.% 45S5 Bioglass nanocomposite was similar to those obtained on the microcrystalline titanium. Mechanical alloying and powder metallurgy process for the fabrication of titanium-45S5 Bioglass nanocomposites with a unique microstructure, higher hardness, lower Young's modulus and better corrosion resistance, in comparison to microcrystalline titanium, were developed. On the other hand, Ti-10 wt.% 45S5 Bioglass composites posses higher fracture toughness compared to 45S5 Bioglass. The proper modification of chemical composition and microstructure of Ti-bioceramic nanocomposites can expand the use of titanium in the biomedical fields. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据