4.7 Article

Fretting-fatigue behavior of steel wires in low cycle fatigue

期刊

MATERIALS & DESIGN
卷 32, 期 10, 页码 4986-4993

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2011.06.037

关键词

-

资金

  1. National Natural Science Foundation of China [50875252]

向作者/读者索取更多资源

The effect of strain amplitude on fretting-fatigue behavior of steel wires in low cycle fatigue was investigated using a fretting-fatigue test rig which was capable of applying a constant normal contact load. The fretting regime was identified based on the shape of the hysteresis loop of tangential force versus displacement amplitude. The variations of the normalized tangential force with increasing cycle numbers and fretting-fatigue lives at different strain amplitudes were explored. The morphologies of fretting contact scars after fretting-fatigue tests were observed by scanning electron microscopy and optical microscopy to examine the failure mechanisms of steel wires. The acoustic emission technique was used to characterize the fretting-fatigue damage in the fretting-fatigue test. The results show that the fretting regimes are all located in mixed fretting regimes at different strain amplitudes. The increase in strain amplitude increases the normalized tangential force and decreases the fretting fatigue life. The abrasive wear, adhesive wear and fatigue wear are main wear mechanisms for all fretting-fatigue tests at different strain amplitudes. The accumulative total acoustic emission events during fretting-fatigue until fracture of the tensile steel wire decrease with increasing strain amplitude. An increase of the strain amplitude results in the accelerated crack nucleation and propagation and thereby the decreased life. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据