4.7 Article

Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder

期刊

MATERIALS & DESIGN
卷 31, 期 10, 页码 4831-4835

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2010.04.033

关键词

Nano-Al2O3; Sn3.5Ag0.5Cu composite solder; Microstructure; Microhardness

资金

  1. Metal Industries Research & Development Centre in Taiwan

向作者/读者索取更多资源

This work investigates the effects of nano-Al2O3 on the microstructure and microhardness of the Sn3.5Ag0.5Cu composite solder alloy. In comparison with solder without the addition of nano-Al2O3 particles, the formation of primary beta-Sn phase, the Ag3Sn phase average size, and the spacing lamellae decreased significantly in the composite solder matrix. In addition, the eutectic areas of the composite solder were wider than that of the Sn3.5Ag0.5Cu solder. This is attributed to the adsorption of nano-Al2O3 particles with high surface free energy on the grain surface during solidification. The wettability property was improved by 0.25-0.5 wt.% addition of nano-Al2O3 particles into the Sn3.5Ag0.5Cu solder. However, when the nano-Al2O3 particles concentration up to over 1.0 wt.% decreased the beneficial influence. Microhardness improved with the addition of nano-Al2O3 particles. This improved mechanical property was due to the composite microstructure, which is close to the theoretical prediction from dispersion strengthening theory. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据