4.7 Article

Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces

期刊

RENEWABLE ENERGY
卷 83, 期 -, 页码 67-77

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2015.04.014

关键词

Vertical axis turbine; Computational Fluid Dynamics; Three-dimensional; Tidal power; Ocean power; Power output

向作者/读者索取更多资源

Three straight-bladed vertical axis turbine designs were simulated using Three-Dimensional (3D) transient Computational Fluid Dynamics (CFD) models, using a commercial Unsteady Reynolds Averaged Navier-Stokes (URANS) solver. The turbine designs differed in support strut section, blade-strut joint design and strut location to evaluate their effect on power output, torque fluctuation levels and mounting forces. Simulations of power output were performed and validated against Experimental Fluid Dynamics (EFD), with results capturing the impacts of geometrical changes on turbine power output. Strut section and blade-strut joint design were determined to significantly influence total power output between the three turbine designs, with strut location having a smaller but still significant effect. Maximum torque fluctuations were found to occur around the rotation speed corresponding to maximum power output and fluctuation levels increased with overall turbine efficiency. Turbine mounting forces were also simulated and successfully validated against EFD results. Mounting forces aligned with the inflow increased with rotational rates, but plateaued due to reductions in shaft drag caused by rotation and blockage effects. Mounting forces perpendicular to the inflow were found to be 75% less than forces aligned with the inflow. High loading force fluctuations were found, with maximum values 40% greater than average forces. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据