4.5 Article

Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change

期刊

MARINE GEOLOGY
卷 273, 期 1-4, 页码 127-140

出版社

ELSEVIER
DOI: 10.1016/j.margeo.2010.02.008

关键词

shoreline modeling; shoreline change; longshore transport; climate variability; sediment budget; Washington State; Oregon State; Columbia River littoral cell

资金

  1. U.S. Geological Survey
  2. Washington State Department of Ecology
  3. Southwest Washington Coastal Erosion Study

向作者/读者索取更多资源

The application of an integrated data analysis and modeling scheme reveals that decadal-scale shoreline evolution along a U.S. Pacific Northwest littoral cell is highly dependent on both sediment supply and wave climate variability. In particular, accurate estimates of (Columbia River) sediment supply and sediment feeding from the lower shoreface are critical components of balancing the barrier beach sediment budget and are therefore essential to making sensible shoreline change hindcasts and forecasts. A simple deterministic one-line shoreline change model, applied in a quasi-probabilistic manner, enables evaluation of the influence of sediment supply and wave climate variability through simulation of historical shoreline change. Through iteration, a range of realistic scenarios are developed to constrain decadal-scale shoreline change predictions. Modeled shoreline changes are significantly sensitive to directional changes in the incident waves, and therefore sensitive to the occurrence of interannual climatic fluctuations such as major El Nino events. A predicted increase in the intensity of the east Pacific wave climate (1.0 m increase in significant wave height in 20 yr) affects forecast shoreline positions only when this increase occurs during the winter storm season. However, the effect of this increase in storm power during any given year is small relative to the impact of major El Nino events. The model has significant skill in decadal-scale hindcasts suggesting that alongshore gradients in sediment transport dominate coastal change at this scale at this site. However, both data and model results suggest that net onshore feeding from the lower shoreface is responsible for approximately 20% of the decadal-scale coastal change. Field measurements and poor model skill at annual scale indicate that cross-shore processes likely dominate coastal change at shorter time scales. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据