4.1 Review

Diversity of KaiC-based timing systems in marine Cyanobacteria

期刊

MARINE GENOMICS
卷 14, 期 -, 页码 3-16

出版社

ELSEVIER
DOI: 10.1016/j.margen.2013.12.006

关键词

Marine Cyanobacteria; Circadian clock; KaiC; Diversity

资金

  1. DFG [AX 84/1-1, Wi2014/5-1]

向作者/读者索取更多资源

The coordination of biological activities into daily cycles provides an important advantage for the fitness of diverse organisms. Most eukaryotes possess an internal clock ticking with a periodicity of about one day to anticipate sunrise and sunset. The 24-hour period of the free-running rhythm is highly robust against many changes in the natural environment. Among prokaryotes, only Cyanobacteria are known to harbor such a circadian clock. Its core oscillator consists of just three proteins, KaiA, KaiB, and KaiC that produce 24-hour oscillations of KaiC phosphotylation, even in vitro. This unique three-protein oscillator is well documented for the freshwater cyanobacterium Synechococcus elongatus PCC 7942. Several physiological studies demonstrate a circadian clock also for other Cyanobacteria including marine species. Genes for the core clock components are present in nearly all marine cyanobacterial species, though there are large differences in the specific composition of these genes. In the first section of this review we summarize data on the model circadian clock from S. elongatus PCC 7942 and compare it to the reduced clock system of the marine cyanobacterium Prochlorococcus marinus MED4. In the second part we discuss the diversity of timing mechanisms in other marine Cyanobacteria with regard to the presence or absence of different components of the clock. (C) 2014 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据