4.2 Article

Seasonality of eelgrass biomass across gradients in temperature and latitude

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 506, 期 -, 页码 71-85

出版社

INTER-RESEARCH
DOI: 10.3354/meps10800

关键词

Zostera marina; Climate change; Phenology; Waterbirds; Ecosystem functioning

资金

  1. European Union [226248]
  2. Greenland Climate Research Centre

向作者/读者索取更多资源

Eelgrass Zostera marina L. meadows are major structural and trophic components of coastal ecosystems. The role of eelgrass in ecosystem functioning depends on biomass and production of the meadows, which can fluctuate greatly during an annual cycle and be major temporal drivers of changes in the coastal zone. We analysed magnitude and seasonality of eelgrass aboveground biomass, shoot density and production across temperature and latitude gradients over the majority of the species' distributional range, and investigated to what extent temperature and/or light drive differences in these values. Eelgrass phenology (timing of peak biomass, start and end of the growing season) showed strong effects of temperature and latitude, indicating that seasonality was considerably advanced in warm areas at low latitudes compared to cold areas at high latitudes. Magnitude of peak aboveground biomass, length of the growing season, mean annual shoot density and aboveground production did not change significantly with either temperature or latitude, indicating that these parameters were controlled mainly by other factors. Annual variation in aboveground biomass and shoot density was significantly smaller in areas with low summer temperature, indicating that while warm-water populations may show substantial temporal variation in biomass, cold-water meadows are less dynamic. These findings were supported by cold-water populations having a larger mean annual biomass and a greater investment in belowground parts. In all significant regressions, temperature was a better predictor of population dynamics than latitude. This indicates that eelgrass phenology might advance considerably in response to global warming, and suggests that the distributional range of this species might be moving northwards. Given the key role of eelgrass in coastal ecosystems, these climate-induced changes might entail substantial impacts on waterbirds, fish, invertebrates and other organisms exploiting these meadows.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据