4.2 Article

Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 396, 期 -, 页码 49-60

出版社

INTER-RESEARCH
DOI: 10.3354/meps08261

关键词

Argopecten ventricosus; Coralline; Rhodolith; Scallop; Larval settlement cues; Lithophyllum margaritae; Maerl; Bahia Concepcion

资金

  1. UC MEXUS (University of California Institute for Mexico and the United States)
  2. American Academy of Underwater Sciences
  3. Farl and Ethel Meyers Oceanographic Trust

向作者/读者索取更多资源

The features of heterogeneous rhodolith beds (maerl) that contribute to their role as nursery habitats in coastal ecosystems are poorly understood. Rhodoliths are branched, unattached coralline algae that form complex benthic substrates and support diverse communities worldwide. Pacific calico scallops Argopecten ventricosus = circularis (Sowerby 11, 1842) occur in high densities in rhodolith beds in the Gulf of California, Mexico. In this study, we found that Lithophyllum margaritae rhodoliths enhanced larval scallop settlement and early post-settlement growth, and examined the settlement cues responsible, In both field and laboratory experiments, larval settlement was significantly higher on (1) rhodolith derived vs. non-coralline sedimentary substrates, (2) living vs, non-living coralline surfaces, and (3) substrates with higher (whole, branching rhodoliths) vs, lower (rhodolith fragments or sediment) structural complexity. In the field, larval settlement (mean SE) onto rhodoliths was 30 to 35 times higher on live rhodoliths (55.0 +/- 13.4 and 84.4 +/- 8.8 larvae cm(-2)) than on non-carbonate sediment (1.8 +/- 0.8 and 2.4 +/- 0.9 larvae cm(-2)) relative to the surrounding rhodolith or sand habitat, respectively. In a laboratory preference experiment, when comparing live vs. dead coralline surfaces respectively, settlement density was 3.3 times greater (55.8 +/- 14.6 vs. 17.0 +/- 4.9 larvae cm(-2)) on whole rhodoliths and 7 times greater (24.2 +/- 4.7 vs. 3.4 +/- 1.3 larvae cm(-2)) on fragmented rhodoliths. The strong cueing to live coralline surfaces may have resulted from live coralline algal surfaces or surface biofilms. Growth, presented as post-settlement size, was significantly greater in scallops that settled onto whole vs. fragmented rhodolith substrates for both live (246.6 +/- 1.9 vs. 238.9 +/- 4.4 mu m) and dead (244.2 +/- 2.8 vs. 234.7 +/- 5.6 mu m) coralline surfaces. The structural and coralline cues provided by live, intact rhodoliths and their large-grained sediments contribute to the importance of rhodolith beds as nursery habitats by increasing both scallop settlement and post-settlement growth. Protection of living rhodolith habitats can enhance scallop and other invertebrate populations as well as the sustainability of scallop fisheries by enhancing early life stages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据