4.4 Article

Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature

期刊

MARINE BIOLOGY
卷 159, 期 11, 页码 2389-2398

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00227-012-1927-4

关键词

-

资金

  1. German Science Foundation (DFG) [GR 1540/11-1,2]

向作者/读者索取更多资源

Associated heterotrophic bacteria alter the microenvironment of cyanobacteria and potentially influence cyanobacterial development. Therefore, we studied interactions of the unicellular freshwater cyanobacterium Microcystis aeruginosa with heterotrophic bacteria. The associated bacterial community was greatly driven by temperature as seen by DNA fingerprinting. However, the associated microbes also closely interacted with the cyanobacteria indicating changing ecological consequence of the associated bacterial community with temperature. Whereas concentration of dissolved organic carbon in cyanobacterial cultures changed in a temperature-dependent manner, its quality greatly varied under the same environmental conditions, but with different associated bacterial communities. Furthermore, temperature affected quantity and quality of cell-bound microcystins, whereby interactions between M. aeruginosa and their associated community often masked this temperature effect. Both macro- and microenvironment of active cyanobacterial strains were characterized by high pH and oxygen values creating a unique habitat that potentially affects microbial diversity and function. For example, archaea including 'anaerobic' methanogens contributed to the associated microbial community. This implies so far uncharacterized interactions between Microcystis aeruginosa and its associated prokaryotic community, which has unknown ecological consequences in a climatically changing world.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据