4.8 Review

Modeling of CO2 capture via chemical absorption processes - An extensive literature review

期刊

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
卷 50, 期 -, 页码 547-566

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2015.04.124

关键词

Chemical absorption; CCS; Rate-based model; Dynamic modeling; CO2

资金

  1. Laboratory of Applied Thermodynamics, Thermal Engineering Section, School of Mechanical Engineering, National Technical University of Athens

向作者/读者索取更多资源

Climate change mainly due to the release of greenhouse gases into the atmosphere is getting alarming dimensions. CO2 capture from point source emissions is a promising solution, lately receiving significant attention. In particular, chemical absorption of CO2 from flue gases using aqueous solvents (mainly alkanolamines) is a well-known process, studied in detail. Modern research aims to optimize this process, maximizing the absorption rates and minimizing the parasitic but not negligible energy requirements for solvent regeneration. This type of analysis requires considering the coupling of the absorption with the power plant operation or other source of CO2. The operation fluctuations and disturbances, such as load variations or start-up mode have to be reflected in the process modeling, justifying the emerging need for dynamic modeling. However, dynamic analysis is not always realizable as dynamic experimental data are scarce in order to enable accurate model validation. Thus, steady state models are still convenient for certain cases. The current work provides a short description of the main modeling approaches followed and enlists representative steady state and dynamic models found in literature. Finally, a primary comparison is performed for some comparable models that used the same set of experimental data for model validation. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据