4.4 Article

Can storms and shore armouring exert additive effects on sandy-beach habitats and biota?

期刊

MARINE AND FRESHWATER RESEARCH
卷 61, 期 9, 页码 951-962

出版社

CSIRO PUBLISHING
DOI: 10.1071/MF09259

关键词

climate change; erosion; ghost crabs; Ocypode; recovery; sandy shores; storm impacts

资金

  1. University of the Sunshine Coast

向作者/读者索取更多资源

Increased storminess is a likely consequence of global climate change; its effects may be most dramatic on coasts dominated by sandy beaches. This scenario demands that the impacts of storms and the role of armouring structures, constructed as storm defences, are better understood. Here, we assess how a relatively small storm affected beach morphology and macrobenthos, and whether a seawall can modulate such impacts. The study system was a small (< 1.5 km long) beach, bisected into parts with and without a seawall. The beach became narrower and steeper during the storm, when 26% of the subaerial sediment prism eroded from the armoured section; sand losses on the unarmoured part were one-fifth of those on the armoured part. Densities of ghost crabs (Ocypode) dropped significantly (36%) and were to some extent modulated by shore armouring; losses were high (62%) just seawards of the seawall where post-storm densities remained consistently lower. There was no ecological recovery in the short term, with most (83%) post-storm density values of crabs being lower, and crab counts in front of the seawall being depressed up to 3 months after the storm. Seawalls can change the resilience of beaches to storms, which may result in stronger ecological effects on armoured coasts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据