4.7 Article

Quantification of mass-specific laser energy input converted into particle properties during picosecond pulsed laser fragmentation of zinc oxide and boron carbide in liquids

期刊

APPLIED SURFACE SCIENCE
卷 348, 期 -, 页码 22-29

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2014.07.053

关键词

Laser fragmentation; Bandgap engineering; Mass specific energy balancing

向作者/读者索取更多资源

Pulsed laser fragmentation in liquids is an effective method to fabricate organic, metal or semiconductor nanoparticles by ablation of suspended particles. However, modelling and up-scaling of this process lacks quantification of the laser energy required for a specific product property like particle diameter of the colloid or bandgap energy of the fabricated nanoparticles. A novel set-up for defined laser energy dose in a free liquid jet enables mass-specific energy balancing and exact threshold determination for pulsed laser fragmentation. By this technique laser energy and material responses can be precisely correlated. Linear decrease of the particle diameter and linear increase of the bandgap energy with mass-specific laser energy input has been observed for the examples of ZnO and B4C particles. Trends are analysed by density gradient centrifugation, electron microscopy, UV-vis and X-ray diffraction analysis of the crystal structure. The study contributes to quantitative model parameters for up-scaling and provides insight into the mechanisms occurring when suspended particles are irradiated with pulsed laser sources. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据