4.4 Article

Molecular characterization of Plasmodium falciparum uracil-DNA glycosylase and its potential as a new anti-malarial drug target

期刊

MALARIA JOURNAL
卷 13, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1475-2875-13-149

关键词

Plasmodium falciparum; Malaria; Uracil-DNA glycosylase; Antimalarials; Drug target

资金

  1. Office of the Higher Education Commission
  2. Mahidol University under the National Research Universities Initiative
  3. Thailand Graduate Institute of Science and Technology under NSTDA [TGIST 01-52-006]

向作者/读者索取更多资源

Background: Based on resistance of currently used anti-malarials, a new anti-malarial drug target against Plasmodium falciparum is urgently needed. Damaged DNA cannot be transcribed without prior DNA repair; therefore, uracil-DNA glycosylase, playing an important role in base excision repair, may act as a candidate for a new anti-malarial drug target. Methods: Initially, the native PfUDG from parasite crude extract was partially purified using two columns, and the glycosylase activity was monitored. The existence of malarial UDG activity prompted the recombinant expression of PfUDG for further characterization. The PfUDG from chloroquine and pyrimethamine resistant P. falciparum strain K1 was amplified, cloned into the expression vector, and expressed in Escherichia coli. The recombinant PfUDG was analysed by SDS-PAGE and identified by LC-MS/MS. The three dimensional structure was modelled. Biochemical properties were characterized. Inhibitory effects of 12 uracil-derivatives on PfUDG activity were investigated. Inhibition of parasite growth was determined in vitro using SYBR Green I and compared with results from human cytotoxicity tests. Results: The native PfUDG was partially purified with a specific activity of 1,811.7 units/mg (113.2 fold purification). After cloning of 966-bp PCR product, the 40-kDa hexa-histidine tagged PfUDG was expressed and identified. The amino acid sequence of PfUDG showed only 24.8% similarity compared with the human enzyme. The biochemical characteristics of PfUDGs were quite similar. They were inhibited by uracil glycosylase inhibitor protein as found in other organisms. Interestingly, recombinant PfUDG was inhibited by two uracil-derived compounds; 1-methoxyethyl-6-(p-n-octylanilino) uracil (IC50 of 16.75 mu M) and 6-(phenylhydrazino)uracil (IC50 of 77.5 mu M). Both compounds also inhibited parasite growth with IC(50)s of 15.6 and 12.8 mu M, respectively. Moreover, 1-methoxyethyl-6-(p-n-octylanilino)uracil was not toxic to HepG2 cells, with IC50 of > 160 mu M while 6-(phenylhydrazino)uracil exhibited cytoxicity, with IC50 of 27.5 mu M. Conclusions: The recombinant PfUDG was expressed, characterized and compared to partially purified native PfUDG. Their characteristics were not significantly different. PfUDG differs from human enzyme in its size and predicted amino acid sequence. Two uracil derivatives inhibited PfUDG and parasite growth; however, only one non-cytotoxic compound was found. Therefore, this selective compound can act as a lead compound for anti-malarial development in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据