4.7 Article

Performance of Landsat 8 Operational Land Imager for mapping ice sheet velocity

期刊

REMOTE SENSING OF ENVIRONMENT
卷 170, 期 -, 页码 90-101

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2015.08.023

关键词

Landsat 8; OLI; LDCM underfly; Glacier flow; Feature tracking

资金

  1. NNX10AN61G [U.S. National Aeronautics and Space Administration]

向作者/读者索取更多资源

Landsat imagery has long been used to measure glacier and ice sheet surface velocity, and this application has increased with increased length and accessibility of the archive. The radiometric characteristics of Landsat sensors, however, have limited these measurements generally to only fast-flowing glaciers with high levels of surface texture and imagery with high sun angles and cloud-free conditions, preventing wide-area velocity mapping at the scale achievable with synthetic aperture radar (SAR). The Operational Land Imager (OLI) aboard the newly launched Landsat 8 features substantially improves radiometric performance compared to preceding sensors: enhancing performance of automated Repeat-Image Feature Tracking (RIFT) for mapping ice flow speed. In order to assess this improvement, we conduct a comparative study of OLI and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) performance for measuring glacier velocity in a range of surface and atmospheric conditions. To isolate the effects of radiometric quantization and noise level, we construct a model for simulating ETM+ imagery from OLI and compare RIFT results derived from each. We find that a nonlinearity in the relationship between ETM+ and OLI radiances at higher brightness levels results in a particularly large improvement in RIFT performance over the low-textured interior of the ice sheets, as well as improved performance in adverse conditions such as low sun-angles and thin clouds. Additionally, the reduced noise level in OLI imagery results in fewer spurious motion vectors and improved RIFT performance in all conditions and surfaces. We conclude that OLI imagery should enable large-area ice sheet and glacier mapping so that its coverage is comparable to SAR, with a remaining limitation being image geolocation. (C) 2015 Elsevier Inc All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据