4.7 Article

Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction

期刊

REMOTE SENSING OF ENVIRONMENT
卷 158, 期 -, 页码 478-491

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2014.11.024

关键词

Landsat; Land cover classification; Time series; Nonlinear dimensionality reduction; WELD

资金

  1. NASA [NNX08AL93A, NNX13AJ24A]
  2. NASA [NNX13AJ24A, 98671, NNX08AL93A, 471794] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Dimensionality reduction (DR) is a widely used technique to address the curse of dimensionality when high-dimensional remotely sensed data, such as multi-temporal or hyperspectral imagery, are analyzed. Nonlinear DR algorithms, also referred to as manifold learning algorithms, have been successfully applied to hyperspectral data and provide improved performance compared with linear DR algorithms. However, DR algorithms cannot handle missing data that are common in multi-temporal imagery. In this paper, the Laplacian Eigenmaps (LE) nonlinear DR algorithm was refined for application to multi-temporal satellite data with large proportions of missing data. Refined LE algorithms were applied to 52-week Landsat time series for three study areas in Texas, Kansas and South Dakota that have different amounts of missing data and land cover complexity. A series of random forest classifications were conducted on the refined LE DR bands using varying proportions of training data provided by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL); these classification results were compared with conventional metrics-based random forest classifications. Experimental results show that compared with the metrics approach, higher per-class and overall classification accuracies were obtained using the refined LE DR bands of multispectral reflectance time series, and the number of training samples required to achieve a given degree of classification accuracy was also reduced. The approach of applying the refined LE to multispectral reflectance time series is promising in that it is automated and provides dimensionality-reduced data with desirable classification properties. The implications of this research and possibilities for future algorithm development and application are discussed. (C) 2014 The Authors. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据