4.5 Article

Accelerating chemical exchange saturation transfer MRI with parallel blind compressed sensing

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 81, 期 1, 页码 504-513

出版社

WILEY
DOI: 10.1002/mrm.27400

关键词

blind compressed sensing; CEST; CEST acceleration; parallel blind compressed sensing; parallel imaging

资金

  1. NIH [R21 EB020245]
  2. CPRIT [RP180031]
  3. University of Texas Southwestern Radiology Research fund

向作者/读者索取更多资源

Purpose: Chemical exchange saturation transfer is a novel and promising MRI contrast method, but it can be time-consuming. Common parallel imaging methods, like SENSE, can lead to reduced quality of CEST. Here, parallel blind compressed sensing (PBCS), combining blind compressed sensing (BCS) and parallel imaging, is evaluated for the acceleration of CEST in brain and breast. Methods: The CEST data were collected in phantoms, brain (N = 3), and breast (N = 2). Retrospective Cartesian undersampling was implemented and the reconstruction results of PBCS-CEST were compared with BCS-CEST and k-t sparseSENSE CEST. The normalized RMSE and the high-frequency error norm were used for quantitative comparison. Results: In phantom and in vivo brain experiments, the acceleration factor of R = 10 (24 k-space lines) was achieved and in breast R = 5 (30 k-space lines), without compromising the quality of the PBCS-reconstructed magnetization transfer rate asymmetry maps and Z-spectra. Parallel BCS provides better reconstruction quality when compared with BCS, k-t sparse-SENSE, and SENSE methods using the same number of samples. Parallel BCS overperforms BCS, indicating that the inclusion of coil sensitivity improves the reconstruction of the CEST data. Conclusion: The PBCS method accelerates CEST without compromising its quality. Compressed sensing in combination with parallel imaging can provide a valuable alternative to parallel imaging alone for accelerating CEST experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据