4.5 Article

Measurement of tibiofemoral kinematics using highly accelerated 3D radial sampling

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 69, 期 5, 页码 1310-1316

出版社

WILEY
DOI: 10.1002/mrm.24362

关键词

dynamic imaging; knee mechanics; joint motion; VIPR

资金

  1. NIH [AR056201]
  2. NSF [0966535]
  3. Robert W. Bolz Distinguished Graduate Fellowship Program
  4. Div Of Chem, Bioeng, Env, & Transp Sys
  5. Directorate For Engineering [0966535] Funding Source: National Science Foundation

向作者/读者索取更多资源

This study investigated the use of dynamic, volumetric MRI to measure 3D skeletal motion. Ten healthy subjects were positioned on a MR-compatible knee loading device and instructed to harmonically flex and extend their knee at 0.5 Hz. The device induced active quadriceps loading with knee flexion, similar to the load acceptance phase of gait. Volumetric images were continuously acquired for 5 min using a 3D cine spoiled gradient-echo sequence in conjunction with vastly under-sampled isotropic projection reconstruction. Knee angle was simultaneously monitored and used retrospectively to sort images into 60 frames over the motion cycle. High-resolution static knee images were acquired and segmented to create subject-specific models of the femur and tibia. At each time frame, bone positions and orientations were determined by automatically registering the skeletal models to the dynamic images. Three-dimensional tibiofemoral translations and rotations were consistent across healthy subjects. Internal tibia rotations of 7.8 +/- 3.5 degrees were present with 35.8 +/- 3.8 degrees of knee flexion, a pattern consistent with knee kinematic measures during walking. We conclude that vastly under-sampled isotropic projection reconstruction imaging is a promising approach for noninvasively measuring 3D joint kinematics, which may be useful for assessing cartilage contact and investigating the causes and treatment of joint abnormalities. Magn Reson Med, 2013. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据